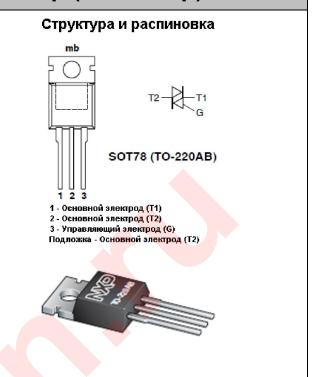


BTA208-600B

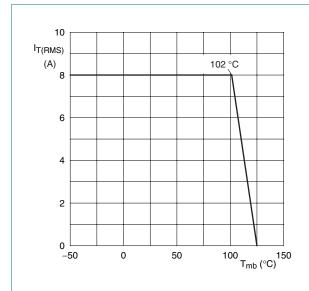

Полупроводниковый тиристор (симистор).

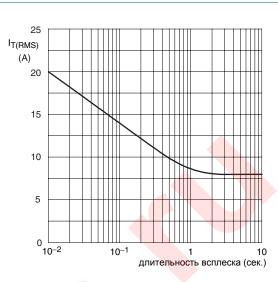
ОСОБЕННОСТИ:

- 3Q технологии для повышения помехоустойчивости.
- Высокая возможность коммутации с максимальной защитой ложных срабатываний.
- Высокая устойчивость к ложному включению dV/dt
- Способность работы на высоких напряжениях.
- Планарно пассивированы для надежности и стойкости к высоким напряжениям.

ПРИМЕНЕНИЕ

- Электронные термостаты.
- Управление двигателем общего назначения.
- Выпрямитель DC индуктивных нагрузок, например, двигатели и соленоиды постоянного тока..




Значения предельно допустимых электрических режимов эксплуатации.

06	Потогот		Значение		Единицы	
Обозначение	Параметр	Условия	Мин.	Макс.	измерения	
Udrm	Периодическое пиковое напряжение в закрытом состоянии			600	В	
IT(RMS)	Действующий ток в открытом состоянии	Полные синусоидальные волны; Tmb≤102°C Рис.1-3		8	Α	
Ітѕм	Максимальный импульсный ток (ударный ток)	полная синусоидальная волна, Tj=25°C Рис.4,5 t=20мсек. t=16.7мсек.		65 71	А	
l ² t	До плавления	t=10мсек.		21	A ² c	
dl _⊤ /dt	Крит <mark>ичес</mark> кая ск <mark>орост</mark> ь увеличения тока открытого тиристора.	I _T =20A; I _G =0.2мA; dI _G /dt=0.2A/мксек.		100	А/мксек	
Igм	Максимальный ток управляющего электрода			2	А	
U Gм	Максимальное напряжение управляющего электрода			5	В	
Рдм	Импульсная рассеиваемая мощность управления симистора			5	Вт	
Pg(AV)	Средняя рассеиваемая мощность управления симистора	за любой период 20 мс		0.5	Вт	
TJ	Температура перехода			125	°C	
Tstg	Диапазон температур хранения		-40	+150	°C	

Тепловые характеристики при Токр. среды = 25°C.

Обозначение	Параметр	Значение	Единицы измерения
Rth(j-mb)	Тепловое сопротивление переход-монтажное основание (полный цикл)	2	К/Ват
Rth(j-mb)	Тепловое сопротивление переход-монтажное основание (полупериод)	2.4	К/Ват
Rth j-a	Тепловое сопротивление переход-окружающая среда	60	К/Ват

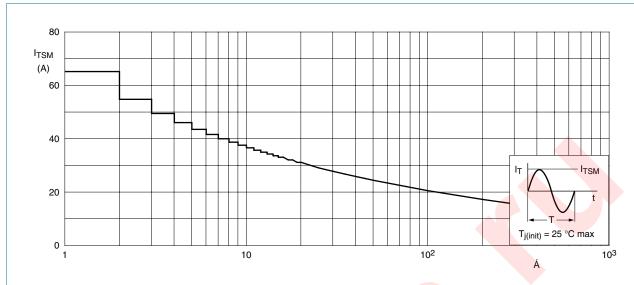

 $f = 50 \text{ Hz}; T_{mb} = 102 \,^{\circ}C$

Рис.1. Средний ток в открытом состоянии в зависимости от температуры; максимальные значения.

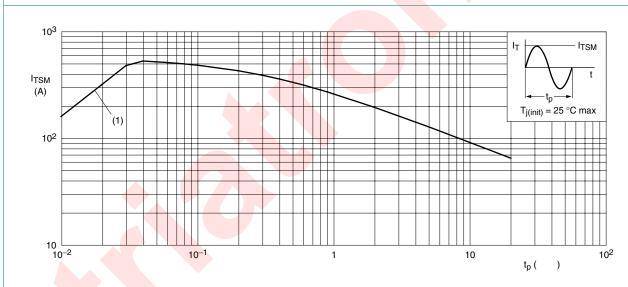
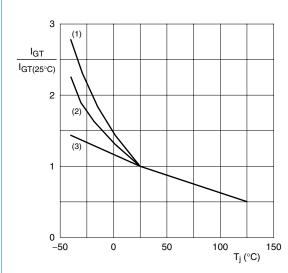

Рис.2. Средний ток в открытом состоянии от длительности всплеска; максимальные значения.

Рис.3. Общая рассеиваемая мощность в зависимости от среднего тока в открытом состоянии; макс. значения.

f = 50 Hz



 $t_p \le 20 \text{ ms}; (1) dI_T/dt \text{ limit}$

Электрические характеристики при Токр. среды = 25°C.

Обозна чение	Параметр	Услов <mark>ия испытани</mark> я	Мин	Тип	Макс	Единицы измерения
		CTATUYECKUE XAPAKTEPUCTUKU				
Ідт	Отпирающий ток управляющего электрода	Up=12B; Iт=0.1A; Рис.7 T2+ G+ T2+ G- T2- G-	2 2 2	18 21 34	50 50 50	мА
lL	Ток срабатывания	Up=1 <mark>2B; Igт=</mark> 0.1A; Рис.8 <mark>T2+</mark> G+ T <mark>2+</mark> G- T <mark>2-</mark> G-		31 34 30	60 90 60	мА
lн	Удерживающий ток	<mark>U</mark> D=12В; Рис.9		31	60	мА
U⊤	Напряжение в <mark>открытом состоянии — — — — — — — — — — — — — — — — — — </mark>	Іт=10А Рис.10		1.3	1.65	В
U gт	Отпи <mark>рающее нап</mark> ряжение на упра <mark>вляющ</mark> ем э <mark>лект</mark> роде	Ub=12B; Igt=0.1A; Рис.11 Ub=400B; Igt=0.1A; Tj=125°C	0.25	0.7 0.4	1.5	В
ΙD	Ток в <mark>закрыто</mark> м состоянии	U _D =600B; Tj=125°C		0.1	0.5	мА
Обозна чение	Параметр	Условия испытания	Мин	Тип	Макс	Единицы измерения
	Д	ИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ				
	Критическая скорость нарастания напряжения в закрытом состоянии	UDM=402B; Tj=125°C; экспоненциальное колебание; цепь управляющего электрода разомкнута				В/мксек.
dl _{com} /dt	Скорость изменения коммутирующего тока	UDM=400B; Tj=125°C; Iт(RMS)=8A; dU _{com} /dt=20B/мксек. цепь управляющего электрода разомкнута	ек. цепь управляющего 14			
I IOI	Время отпирания по управляющему электроду	lтм=12A; Ub=600B; Ig=0.1A; dl _G /dt=5A/мксек.		2		мксек.

- (1) T2- G-
- (2) T2+ G-
- (3) T2+ G+

Рис.7. Отпирающий ток управляющего электрода в зависимости от Tj перехода.

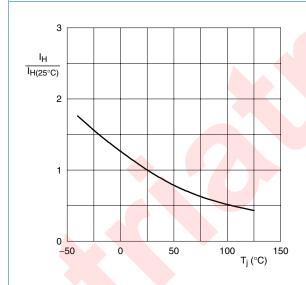


Рис.9. Нормализированный удерживающий ток в зависимости от Tj перехода.

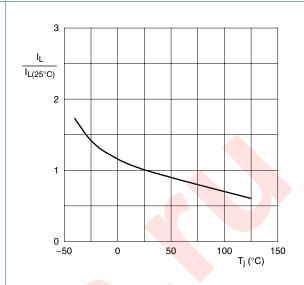
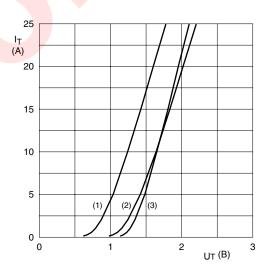



Рис.8. Нормализированный ток срабатывания в зависимости от Тj перехода.

Uo = 1.264 B; Rs = 0.0378 ом

- (1) Тj = 125 °C; типичные значения
- (2) Тj = 125 °C; максимальные значения
- (3) Тj = 25 °С; максимальные значения

Рис.10. Ток в открытом состоянии в зависимости от напряжения.

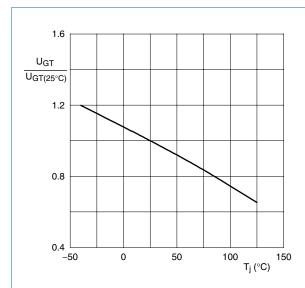


Рис.11. Отпирающее напряжение на управляющем электроде в зависимости от Тj перехода.

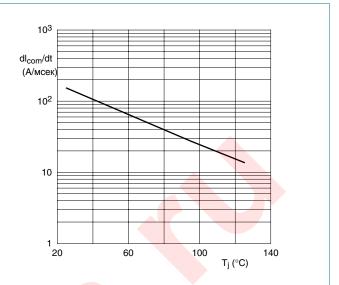
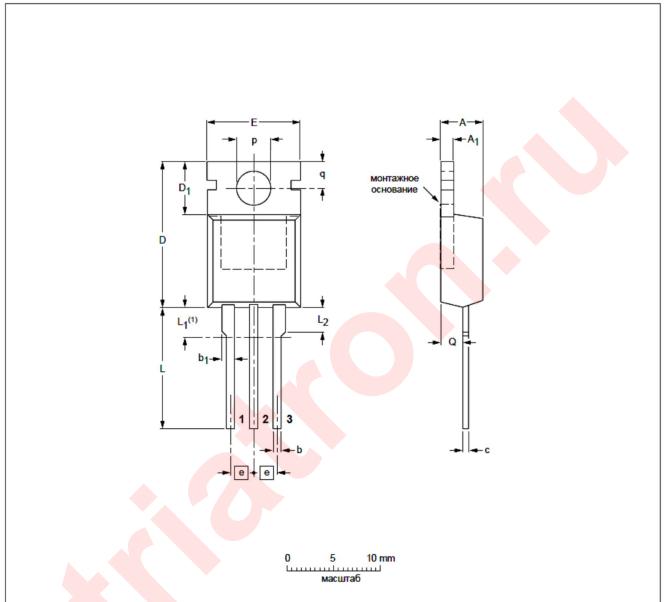



Рис.12. Скорость нарастания коммутационного тока в зависимости от Тј перехода; типичные значения.

Размеры корпуса.

Пластиковый корпус; установка на радиатор ; 1 монтажное отверстие; 3 - вывода SOT78 (TO-220AB)

РАЗМЕРЫ (мм, оригинальный размер)

Един.	A	A ₁	b	b ₁	С	D	D ₁	Е	e	L	L ₁ ⁽¹⁾	L ₂ max.	р	q	Q
мм	4.5 4.1	1.39 1.27	0.9 0.6	1.3 1.0	0.7 0.4	15.8 15.2	6.4 5.9	10.3 9.7	2.54	15.0 13.5	3.30 2.79	3.0	3.8 3.6	3.0 2.7	2.6 2.2