NAKXIV

Maxim > App Notes > 1-Wire® Devices Temperature Sensors and Thermal Management

Keywords: DS18S20, DS18B20, DS1822 1-wire, 1 wire, 1-Wire, temperature sensors, digital temperature sensors, temperature sensor IC, Mar 08, 2002
microcontrollers, micro-controllers

Interfacing the DS18X20/DS1822 1-Wire® Temperature Sensor in a
Microcontroller Environment

Abstract: This application introduces the user to simple 1-Wire software for interfacing a microcontroller to the DS18B20,
DS18S20, and DS1822 1-Wire temperature sensors. For example purposes in the article, the DS5000 (8051 compatible)
microcontroller is used. Software examples are given that illustrate the implementation of delay, reset, read bit, write bit, read
byte, write byte, ROM search, CRC, read temperature, and read scratch pad routines.

Introduction

There are several methods available for interfacing 1-Wire devices such as the DS18B20, DS18S20, or DS1822 to a
microcontroller. These methods range from simple software solutions, to using a Serial Interface chip such as the DS2480B, to
incorporating Maxim's VHDL 1-Wire Master Controller in a custom ASIC. This article introduces the user to the simplest possible
software solution for basic 1-Wire communication between a microcontroller and any number of DS18x20 or DS1822 temperature

SEensors.

Detailed timing and operational information for the DS18B20, DS18S20 and DS1822 is available in their respective datasheets,
which can be obtained from the Maxim website.

Hardware Configuration

The block diagram in Figure 1 illustrates the simplicity of the hardware configuration when using multiple 1-Wire temperature
sensors. A single-wire bus provides both communication access and power to all devices. Power to the bus is provided through the
4.7kQ pullup resistor from a 3V to 5.5V supply rail. An almost unlimited number of 1-Wire devices can be connected to the bus
because each device has a unique 64-bit ROM code identifier.

3V TO 5.5V
HOST " F Y A A
MICRCCONTROLLER
L v T
gesereatbussaseny
1-Wire 1-Wire Potwie
TEMP TEMP H TEMP E
SENSOR SENSOR E SEMSOR ®
- L]
1 2 : N :
;ll'l_lllll_l.f

Figure 1. Host microcontroller interface.

Interface Timing

Communication with the DS18x20/DS1822 is achieved through the use of "time slots", which allow data to be transmitted over the
1-Wire bus. Every communication cycle begins with a reset pulse from the microcontroller followed by a presence pulse from the

DS18x20/DS1822 as shown in Figure 2.

A write time slot is initiated when the bus master pulls the 1-Wire bus from logic high (inactive) to logic low. All write time slots
must be 60us to 120us in duration with a 1pus minimum recovery time between cycles. Write "0" and write "1" time slots are

Page 1 of 15

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.maxim-ic.com/appnotes10.cfm
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/24/ln/en
http://www.maxim-ic.com/DS18B20
http://www.maxim-ic.com/DS18S20
http://www.maxim-ic.com/DS1822

illustrated in Figure 3. During the write "0" time slot, the host microcontroller pulls the line low for the duration of the time slot.
However, during the write "1" time slot, the microcontroller pulls the line low and then releases the line within 15us after the start of

the time slot.

A read time slot is initiated when the microcontroller pulls the bus low for 1us then releases it so the DS18x20/DS1822 can take
control of the line and present valid data (high or low). All read time slots must be 60us to 120us in duration with a minimum 1pus
recovery time between cycles (see Figure 3).

430ps MIMIMUM - —— DOS18x20/051822
MICROCOMTROLLER li—15us TO B0us—»| 4— PRESENCE PULSE
RESET PULSE 60us TO 240ps
1-Wire BUS

Figure 2. Reset pulse and presence pulse.

LINE TYPE LEGEND (FIGURE 2 AND FIGURE 3)
I EUS MASTER PULLING LOW EEE DS18x20/DS1822 PULLING LOW

RESISTOR PULLUP

START START
OF SLOT OF 8LOT

WRITE “0” SLOT WRITE “1" SLOT

—
B0ps = Ty 0° = 120us —

4+— Aps <TReg <=

+— = s

Veu
1-Wire BUS
GMND
DS18x20/DS1822 SAMPLES DS18x20/DS1822 SAMPLES
MIN TP ALK MM TYP MAX
%+ 1Spz |4 15ps Wl4— = —* 4+ 15ps |4 15 »lq4—— 3y —p
READ “0™ SLOT READ *“1" SLOT
Veu
1-Wire BUS

= us

"H‘i MASTER SAMPLES > Tus — \ ‘—pﬂqf MASTER SAMPLES

45ps 4’| l.q_ 15us

Figure 3. Write and read time slots.

Software Control

In order to accurately control the special timing requirements of the 1-Wire interface, certain key functions must first be established.
The first function created must be the "delay" function which is integral to all read and write control. This function is entirely

Page 2 of 15

dependent on the speed of the microcontroller. For the purpose of this article, the DS5000 (8051 compatible) microcontroller is
used, which runs at 11.059MHz. The example to the right illustrates the "C" prototype function for creating the timing delay.

Delay Example

// DELAY - with an 11.059MHz crystal.
// Calling the routine takes about 24us, and then
55 each count takes another 16us.

void delay(int useconds)

int s;
for (s=0; s<useconds;s++);

Since each communication cycle must begin with a reset from the microcontroller, the "reset" function is the next most important
function to be implemented. The reset time slot is 480us. By setting a delay of "3", followed by "25" (see the example below), the
reset pulse will last for the required duration. Following the reset, the microcontroller must release so the DS18x20/DS1822 can
indicate its "presence" by pulling the line low. Note that if multiple temperature sensors are on the bus, they will all respond
simultaneously with a presence pulse.

Reset Example

L11777771777777777777777777777777777777777/7777/7/7777///777////77/7////77////77
// OW_RESET - performs a reset on the one-wire bus and

// returns the presence detect. Reset is 480us, so delay

// value is (480-24)/16 = 28.5 - we use 29. Presence checked

55 another 70us later, so delay is (70-24)/16 = 2.875 - we use 3.

unsigned char ow_reset(void)

unsugned char presence;

0; //pull DQ line low
delay(29) // leave it low for 480us
DQ = 77 allow line to return high
delay(3) // walt for presence
presence = D // get presence signal
delay(25); 7/ “wait for end of timeslot
return(presence) // presence signal returned
} 7/ O=presence, 1 = no part

The read and write function code segments shown in the following four examples provide the basic structure needed for all data bit
and data byte read and write operations.

Read Bit Example

L1117777777777777777777777777777777777777//77777/7777/7/777////77/////77////77
// READ BIT - reads a bit from the one-wire bus. The delay

// required for a read is 15us, so the DELAY routine won"t work.

// We put our own delay function in this routine in the form of a

55 for() loop.

unsigned char read_bit(void)

unsugned char 1i;

DQ = 0; // pull DQ low to start timeslot

DQ = 1; // then return high

for (i i=0; i<3; i++); // delay 15us from start of timeslot
ieturn(DQ) /7 retirn value of DQ line

Page 3 of 15

Write Bit Example

L1177 777/7777777777//777777/77//7/777/7/77///77777/7/7/7//7/7777/7/////7/77/7/7///77777
55 WRITE_BIT - writes a bit to the one-wire bus, passed in bitval.
void write_bit(char bitval)

{

Qg = 0; // pull DQ low to start timeslot)

i bltvaI::}) D? =1; // return DQ high if write 1
Se ayg5); // hold value for remainder of timeslot

} /_Deiay provides 16us per loop, plus 24us. Therefore delay(5) = 104us
Read Byte Example

L1171 717/7777777777/777777/777//777777777//7777777/////7777/7/7/////777/7/7///77777
55 READ_BYTE - reads a byte from the one-wire bus.
unsigned char read_byte(void)

unsigned char 1i;

unsigned char value = 0;

for (i=0;i<8;i++)

if(read bit()) value|=0x01<<i; // reads byte in, one byte at a time and then
// shifts it left i

delay(6); // wait for rest of timeslot

return(value);

Write Byte Example

L1177 777/777777777//77777777///77777777///77777/7/////7777/7/7////7777/7/7///77777
55 WRITE_BYTE - writes a byte to the one-wire bus.

void write_byte(char val)

unsigned char i;
unsigned char temp;) i i
for (i=0; i<8; i++) // writes byte, one bit at a time

temp = val>>i; // shifts val right "i" spaces
temp &= 0x01; // copy that bit to temp_
write bit(temp); // write bit in temp into

delay(b);
}

The Search ROM Algorithm

To take full advantage of the 1-Wire net concept, the microcontroller must be able to communicate with any number of devices
connected to the net. In order to do this, the microcontroller must learn the unique 64-bit ROM identification code for each device
on the bus using the "Search ROM" algorithm illustrated in Figure 4. The example following Figure 4 explains a Search ROM
routine for a bus with four slave devices. Sample code for a Search ROM routine is also shown. Once all the ROM codes have
been identified, the "Match ROM" command can be used to communicate with any specific device on the net.

Page 4 of 15

NEXT)

¥

PN

/15 DONE ™. YES

SEARCH ROM ALGORITHM

SET RETURM VALUE TO FALSE (0) |1—

FIRST

“0" AND CLE

SET LAST DISCREPAMNCY TO

AR DOME BIT

SETUP

INITIALIZE 1-Wire BUS

I SET ROM BIT INDEX TC "A°

| SET ROM BIT INDEX TO 17

SEMD BIT INDEX. TO 1-Wire BUS

o

| INCREMENT ROM BIT INDEX |

SET DISCEREPANCY MARKER
TO ROM BIT INDEX,

Yy
YES - ROM Ell';?

FLAG SET? ~ P CLEAR DONE FLAG I INITIALIZE LAST
\ //’ DISCREPANGY TO 0"
Mo
¥
|5END REST SIGHAL ON 1-Wire BUS | CLEAR DONE FLAG
AEE:S::EE HNO > RETURM
DETECTED? {REAI:“'} _,_.-")
-~ .__‘__‘_‘_'_"_
¥ VES
SET ROM BIT INDEX TO 1
I
SET DISCREPANCY MARKER TO "0
|
SEND SEARCH COMMAND (FU)
OM 1-Wire BUS
I
+| READ BIT “A" FROM 1-Wire BUS
READ BIT "B FROM 1-Wire BUS
ke
/ ™
BIT"A"- ™ ¥ES ¥ -
BIT B~ = ‘1}, SET LAST DISCREPANCY TO 07 >
\ A
\\\
apm _ ROM BIT
BIT "A" = NO INDEX = LAST =, MO
BIT"B" = CISCREDAMCY?
{r ; YES

SET ROM BIT INDEX. TO ™

o

T

NS

l '{\I\DEI =/

X\ /..-"’-ﬁ"\ \\ﬁqfﬂ'
NO _~isRomBIT~ES | SET DISCREPANCY TO e um*rEs
INDEX = 647 DISCREPANCY MARKER —P\D'mflfg'_gwr/%b SET DONE FLAG

v

i

MO

SET RETURM VALUE TO TRUE (1)

RETURN
—D-(ROM CODE

Figure 4. Search ROM algorithm.

Page 5 of 15

ROM Search Example

During the ROM search process, the bus master must repeat a simple three-step routine: 1) read a ROM code bit from the slave
devices, 2) read the complement of the bit, 3) write the selected value for that bit. The bus master must perform this three-step
routine 64 times—once for each ROM code bit. After one complete pass, the bus master will know the ROM code for one slave
device on the bus. The remaining devices and their ROM codes can be identified though additional passes.

The ROM Search process is illustrated by the following example that assumes four different devices are connected to the same 1-
Wire bus. The ROM codes of the four devices are as shown:

ROM1 00110101...
ROM2 10101010...
ROMS3 11110101...
ROM4 00010001...

The search process goes as follows:

1.

10.

The bus master begins the initialization sequence by issuing a reset pulse. The slave devices respond by issuing
simultaneous presence pulses.

The bus master then issues the Search ROM command on the 1-Wire bus.

Each device will respond to the Search ROM command by placing the value of the first bit of their respective ROM codes
onto the 1-Wire bus. The master will then read the bus value. In this case, ROM1 and ROM4 will place a 0 onto the 1-Wire
bus, i.e., they will pull it low. ROM2 and ROM3 will place a 1 onto the 1-Wire bus by allowing the line to stay high. The
result is the logical AND of all devices on the line; therefore, the bus master will read a 0. All of the devices on the 1-Wire
bus will respond to this read by placing the complement of the first bit of their ROM codes onto the 1-Wire bus: ROM1 and
ROM4 will place a 1 onto the 1-Wire bus, allowing the line to stay high, and ROM2 and ROM3 will place a 0 onto the bus,
pulling it low. The bus master will now read the bus again and will again read a 0.

Depending on the slave device ROM codes, there are four possible data combinations that the bus master can obtain from
the two reads. These combinations can be interpreted as follows:

00 There are devices connected to the bus which have conflicting bits in the current ROM code bit position.
01 All devices connected to the bus have a 0 in this bit position.

10 All devices connected to the bus have a 1 in this bit position.

11 There are no devices connected to the 1-Wire bus.

In this example, bus master has read a 0 during each read, which tells it that there are some devices on the 1-Wire bus that
have a 0 in the first ROM code position and others that have a 1.

In response to the previous data, the bus master writes a 0 onto the bus. This deselects ROM2 and ROM3 for the
remainder of this search pass, leaving only ROM1 and ROM4 "connected" to the 1-Wire bus.

The bus master performs two more reads and receives a 0 followed by a 1. This indicates that all devices still connected to
the bus have 0s as their second ROM data bit.

. The bus master then writes a 0 to keep both ROM1 and ROM4 connected to the bus.

. The bus master again executes two reads and receives two 0s. This indicates to the master that one of the devices on the

1-Wire bus has a 0 in the third ROM code position and the other has a 1.

. The bus master writes a 0 onto the bus, which deselects ROM1 and leaves ROM4 as the only device still connected.

. The bus master reads the remainder of the ROM bits from ROM4 and continues to access the ROM4 device if desired. This

completes the first ROM search pass; the bus master has now uniquely identified one slave (ROM4) on the 1-Wire bus by
learning its ROM code.

The bus master starts a new ROM search sequence by repeating steps 1 through 7.

Page 6 of 15

11. The bus master now writes a 1 onto the bus (instead of a 0, as was done in step 8). This decouples ROM4, leaving only
ROML still connected.

12. The bus master now reads the remainder of the ROM bits from ROM1 and can communicate with the ROM1 device if
desired. This completes the second ROM search pass, and the master has now identified another slave device (ROM1).

13. The bus master starts a new ROM search by repeating steps 1 through 3.

14. The bus master now writes a 1 onto the bus (instead of a 0, as was done in step 4). This deselects ROM1 and ROM4 for
the remainder of this search pass, leaving only ROM2 and ROM3 coupled to the bus.

15. The bus master executes two reads and receives two 0s.
16. The bus master writes a 0 onto the bus, which decouples ROM3, leaving only ROM2 connected to the bus.

17. The bus master reads the remainder of the ROM bits from ROM2 and communicates with the ROM2 device if desired. This
completes the third ROM search pass, and the master has now identified the ROM2 slave device.

18. The bus master starts a fourth and final ROM search by repeating steps 13 through 15.

19. The bus master writes a 1 onto the bus (instead of a 0, as was done in step 16), which decouples ROM2, leaving only
ROMS3 connected to the bus.

20. The bus master reads the remainder of the ROM bits from ROM3 and communicates with the ROMS3 device if desired. This
completes the fourth ROM search pass, during which the master identified the ROM3 device. At this point the master has
identified all the slave devices on the bus, and from this point on the bus master can individually address any of the devices
using their ROM codes.

Note: The bus master learns the unique ROM code of one 1-Wire device during each ROM search pass. The time required to
learn one ROM code is:

960us + (8 + 3 x 64) 61us = 13.16m

The bus master is therefore capable of identifying 75 different 1-Wire slave devices per second.

Search ROM Code Examples

As shown in the prototype function below, the "Find Devices" function begins with a 1-Wire reset to determine if any devices are on
the net, and if so, to wake them up. The "First" function is then called, to keep track of the discrepancy bits and return to "Next",
which finds each unique device on the net.

The "Next" function is quite extensive and does most of the work in finding each unique 64-bit ROM code identifier for each device
on the net.

// FIND DEVICES
void FindDevices(void)

unsigned char m;
if(low_reset()) //Begins when a presence is detected

if(First()) //Begins when at least one part is found

NumMROMs=0;
do

{
NUMROMsS++;
Ffor(m=0;m<8;m++)

{
FoundROM[numROMs] [m]=ROM[m] ; //1dentifies ROM
\\number on found device

} printf(""\nROM CODE =%02X%02X%02X%02X\n"",

FoundROM 5][FoundROM[S][G FoundROM[][5] , FoundROM[5 [,

FoundROM[5 FoundROM FoundROM FoundROM[5]1[0]);
it

%while (Next(&&(numROMs<10) //Continues until no ad tional devices are found

Page 7 of 15

!

// FIRST

// The First function resets the current state of a ROM search and calls

55 Next to find the Ffirst device on the 1-Wire bus.
unsigned char First(void)

astDiscrep = 0; // reset the rom search last discrepancy global

doneFlag = FALSE;)
return Next(); // call Next and return its return value

// NEXT

// The Next function searches for the next device on the 1-Wire bus.
55 there are no more devices on the 1-Wire then false is returned.

unsigned char Next(void)

1; // ROM Bit index
0; // ROM Byte index
1; // bit mask

unsigned char m
unsigned char n
unsigned char k
unsigned char x = 0;

unsigned char discrepMarker = 0; // discrepancy marker
unsigned char g; // Output bit

unsigned char nxt; // return value

int flag;

nxt = FALSE; // set the next flag to false

dowcrc = 0; // reset the dowcrc

fla% = ow_reset(); // reset the 1-Wire
if(flag||doneFlag) // no parts -> return false

astDiscrep = 0; // reset the search
return FALSE;

grite_byte(OxFO); // send SearchROM command
o]
// for all eight bytes

X = 0;

if(read_bit()==1) x = 2;

delay(6);

if(read_bit()==1) x |= 1; // and its complement

gf xk:iﬁ) // there are no devices on the 1-Wire
reak;

else

Ef(x>0) // all devices coupled have 0 or 1
gI: x>>1; // bit write value for search
else

5/ if this discrepancy is before the last
// discrepancy on a previous Next then pick
// the same as last time

if(m<lastDiscrep)

g = (SROMgn]&k)>0);]

else /7 it equal to last pick 1)

9 :_gm::IastD[screp); // 1f not then pick O
/ it 0 was picked then record

// position_with mask k

it (g==0) discrepMarker = m;

1T(g==1) // isolate bit in ROM[n] with mask k
ROM[n] 1= k;

else

ROM[N] &= ~k;

write_bit(g); // ROM search write

m++; 7/ increment bit counter m

k = k<<1; // and shift the bit mask k
if$k==0) // if the mask is O then go to new ROM
{ // byte n and reset mask

ow_crc(ROM[n]); // accumulate the CRC

n++; k++;

while(n<8); //loop until through all ROM bytes 0-7
1T(m<65] |dowcrc) /7 if search was unsuccesstul then
lastDiscrep=0; // reset the last discrepancy to O

Page 8 of 15

else

/ search was successful, so set lastDiscrep,

// lastOne, nxt

IastDlscrep = discrepMarker;

doneFlag = (lastDiscrep==0);

nxt = TRUE; // indicates search is not complete yet, more
// parts remain

return nxt;

Performing a Cyclic Redundancy Check

A cyclic redundancy check (CRC) can be accomplished using the functions shown below and should be included when performing
the Search ROM function.

L1177 71777/777777777/7777777777/77777777///777777/77////77777/7/////777/7/7////7777
;; ONE WIRE CRC
unsigned char ow_crc(unsigned char x)

owcrc = dscrc_table[dowcrc/™x];
return dowcrc;

#define FALSE 0

#define TRUE
//
55 GLOBAL VARIABLES

unsigned char ROM[8]; 7/ ROM Bit

unsigned char IastDlscrep 0; // last discrepancy

unsigned char doneFlag = 0; // Done flag

unsigned char FoundROM[S][S] // table of found ROM codes
unsigned char numROMs;

unsigned char dowcrc;

unsigned char code dscrc_table[] =

0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};

Reading Device Temperature

If there is a single device on the net, then the "Read Temperature" function can be used directly as shown below. However, if
multiple devices are on the net, in order to avoid data collisions, the "Match ROM" function must be used to select a specific
device.

The code example below was written specifically for use with the DS18S20 temperature sensor. To use this code with the
DS18B20 or DS1822, it must be modified slightly due to differences in the temperature register format. Refer to the respective
datasheet for temperature register format information.

void Read_Temperature(void)

{

char get[10];

char temp_ Isb ,temp_msb;

int k;

char temp f,temp_c;

ow_reset();

write_byte(0xCC //Skip ROM
write_byte(0x44); // Start Conversion
delay(5§

ow reset()

Page 9 of 15

write byteEOxCC // Skip ROM

write byte(OxBE); // Read Scratch Pad

for (k=0;k<9; k++){get[k] read byte();}

prlntf("\n ScratchPAD DATA =

%X %X%X%X%X\n"" et[8],get[7],get[6] ?etIS],get[4],get[3],get[2],get[l],get[O])
temp_msb = geti // Sign byte +

temp Isb = get|0 2 // Temp data plus Isb

if temg_msb <= 0x80){tem Isb = (temp_Isb/2);} // shift to get whole degree
temp_ms temp_msh & Ox80 // mask all but the sign bit

it (temp_msb >= 0x80 {temp_lsb = (~temp_Isb)+1;} // twos complement

it (temp_msb >= 0x80 temp_Isb tem st/2) %// shift to get whole degree
if (temp msb >= 0x80 temp_Isb = E 1)*temp } // add sign bit

printf(“\nTempC— %d degrees C\n", |nt)temp Isb // print temp. C

temp_ c temp_Isb; 7/ read for conversion to Fahrenhelt

temp_f (((lnt)temp c §/5 + 32; i

grlntf("\nTempF= %d degrees F\n", (int)temp_f); // print temp. F

Reading the Scratch Pad Memory

The Scratch Pad memory provides the user with all the necessary device data including temperature, TH and TL programmable
thermometer settings, as well as the Count Remain and Count Per C data used in fractional temperature measurements. The CRC
byte is also included in Scratch Pad memory.

void Read_ScratchPad(void)

int j;

char pad[lO]

prlntf("\nReadlng ScratchPad Data\n');

write byte(OxBE)

for 0;J<9; J++){pad[j] read _byte();}

print ("\n ScratchPAD

O}/oX%X%X%X%X%X\n" ,pad[8], pad [7] pad[6],pad[5],pad[4],pad[3],pad[2],pad[1],pad[0]);

The "Read ROM" command is used to find the 64-bit ROM code when only a single device is on the net. Multiple devices require
the use of the "Search ROM" functions.

void Read_ ROMCode(void)

int n;

char dat[9]

prlntf("\nReadlng ROM Code\n');

ow_reset();

write byte(0x33)'

for (n=0;n<8;n++) dat[n] read b CP

grlntf("\n ROM Code %X%X%X%X\n" at[7].dat[6],dat[5],dat[4].,dat[3],dat[2].,dat[1],dat[0]);

The "Match ROM" function must provide the 64-bit ROM-ID to select an individual device on the net.

55 Perform Match ROM
unsigned char Send_MatchRom(void)

unsigned char i;
if(ow_reset()) return false;
write_byte(0x55); // match ROM
for(i=03i<8;i++

{
¥rite_byte(FoundROM[numROMs][i]); //send ROM code

return true;

Appendix A

DS5000 (8051 Source Code)

// lwiretalk.c -- Functions for the Dallas Semiconductor DS18x20/DS1822

// Two-Wire Temperature Sensor

// Designed for 8051 microcontrollers

// This code was developed using the DS5000/DS2251T

;4 Please note that 128K RAM size is required to run this program. Ny
//#pragma CODE SMALL OPTIMIZE(3)

Page 10 of 15

/* command line directives */

#include <absacc.h> /* absolute addressing modes */
#include <ctype.h> /* character thes */

#include <math.h> /* standard mat

#include <stdio.h> /* standard 1/0 */

#include <string.h> /* string functions */

ﬁinclude <ds50001w.h> /* DS5000 series 8052 registers */

*
__ /
/* Configuration parameters */)
#define XtalFreq (11059490) /* main crystal frequency */

#define CntrFreq (XtalFreg/12) /* main counter frequency */

#define BaudRate (9600) /* baud rate */

#define CntrTime (8 * number of cycles for counter */

#define Ft (32768.0) /* target crystal frequency */
7 iy
////é;///////////////////BEGIN MAIN PROGRAM///////////////////////////7/77
main

/

K o o e */
/* Local variables */

/* __ */
9Qsigned char Select_Type; /* Function variable */)
/* Start of program execution */

/* __ */
;: Inhibit the watchdog timer and set up memory */ y
TA = OxAA; /* timed access */

TA = 0x55;

ECON = 0x00; /* inhibit watchdog timer */)
/* Set up the serial port */ y
SCON = 0x50; /* SCON: mode 1, 8-bit UART, enable rcvr */

TMOD = Ox21; /* TMOD: timer 1, mode 2, 8-bit reload */

/* TMOD: timer O, mode 1, 16-bit */

PCON |= 0x80; /* SMOD = 1 Double Baud Rate for TH1 load */

THO=TLO = O;

TH1=TLO = (un5|gned int)(256 - ((XtalFreq / BaudRate) / 192));

TRO = 1; /* TRO: timer O run */

TR1 = 1; /* TR1: timer 1 run */

II =1; /* Tl: set Tl to send first char of UART */ y
A e e e e e o e Y, *
/* Display DS1820 One-Wire Device banner */)

prlntf \n'");

printf (" Dallas Semiconductor - Systems Extension\n');

printf (" Source for DS1820 Temperature Reading and\n™);

printf (" Search ROM code.\n");

printf (" Updated Code August, 2001 \n');

printf (" [C Program for DS500x or 8051 Compatible Microcontroller]™);
printf(" n\n ;

printf Select Menu Option\n');

printf (" 1. One-Wire Reset\n');

printf (" 2. Read ROM Code of Slngle Device On Net\n™");
printf (" 3. Perform Search ROM\n'");

printf (" 4. Read Scratch PAD\n™);

printf (" 5. Read Temperature\n" :

printf (" 6. Find AIl Devices\n'");

printf ("\n\n'");

printf (" Note: This_program represents an example only.\n"");

Brlntf " No warranties or technical support is provided with this programi\n");
O x/
/* Enable CE2 */

/* __ */
EA = 0; /* Inhibit interrupts */

TA = OxAA; /* timed access */

TA = 0x55;

yCON = MCON |= Ox04; /* Enable topside CE OxCC */ y
A e e e e e e e e Y, *
/* Disable CE2 */

/* __ */
TA = OxAA; /* timed access */

TA = 0x55;

MCON = OxC8; /* Disable topside CE */
EA = 1; /* Enable interrupts */

Page 11 of 15

Select Ty?e = getchar() /* get variable to start */
?W|tch(8e ect_Type)

case "1°: printf ("'\n 1. Sent 1-Wire Reset\n");
ow_reset();
break;
case "2": printf (" 2. Read ROM Code of Single Device On Net\n');
ow_reset();
Read ROMCode()
case "3°: prlntf("\n 3. Performing Search ROM\n™);
ow_reset();
First();
print ("\nROM CODE =%02X%02X%02X%02X\n""*
FoundROM[S][] FoundROM[S][G] FoundROM[][5] , FoundROM 5][4],
EounEROM 5 FoundROM FoundROM FoundROM oD
reak;
case "4°: printf ("\n 4. Read Scratch PAD\n');
ow_reset();
write byte(OxCC); // Skip ROM
Read_ScratchPad();
break;
case "5": printf ("\n 5. Read Temperature\n);
EeadRTemperature() //initiates a temperature reading
reak;
case "6": printf ('\n 6. Find All Devices\n');
ow_reset();
FindDevices();
break;
gefaﬂlt: printf ('"\n Typo: Select Another Menu Option\n');
reak;
; /* end switch*/
5 while (1); /* Loop forever */
*

Appendix B

DS5000 (8051 C Include Header File)

DS5000.H
Header file for Dallas Semiconductor DS5000.)
Copyright (c) 1995-1996 Keil Software, Inc. All rights reserved.

#ifndef DS5000 HEADER_FILE
ﬁgefine DS5000_HEADER_FILE 1

__ */
sfr PO = 0x80;
sfr SP = 0x81;
sfr DPL = 0x82;
sfr DPH = 0x83;
sfr PCON = 0x87;
sfr TCON = 0x88;
sfr TMOD = 0x89;
sfr TLO = Ox8A;
sfr TL1 = Ox8B;
sfr THO = 0Ox8C;
sfr TH1 = 0x8D;
sfr P1 = 0x90;
sfr SCON = 0x98;
sfr SBUF = 0x99;
sfr P2 = OxAO
sfr IE = OxAS8;
sfr P3 = 0OxBO;
sfr IP = OxBS
sfr MCON = 0xC6;
sfr TA = OxC7;
sfr PSW = 0OxDO;
sfr ACC = OxEO;
sir B = OxFO;
DS5000 PO Bit Registers y

//sbit PO_0 = 0x80; // Set Output Here
sbit DQ = 0x80 /7 Set Output Here
sbit PO_1 = 0x81;

Page 12 of 15

sbit PO_2 = 0x82;
sbit PO_3 = 0x83;
sbit PO_4 = 0x84;
sbit PO 5 = 0x85;
sbit PO_6 = 0Ox86;
sbit PO_7 = 0x87;
AN162
17
A e e e e e e
DS5000 PCON Bit Values iy
#define IDL_ Ox01
#define STOP_ 0x02
#define EWT_ 0x04
#define EPFW_ 0x08
#define WTR_ 0Ox10
#define PFW_ 0x20
#define POR_ 0x40
ﬁgefine SMOD_ 0x80
DS5000 TCON Bit Registers iy
sbit ITO = 0x88;
sbit IEO = 0x89;
sbit IT1 = Ox8A;
sbit IE1 = 0x8B;
sbit TRO = 0x8C;
sbit TFO = 0x8D;
sbit TR1 = Ox8E;
sbit TF1 = Ox8F;
*
DS5000 TMOD Bit Values)
#define TO_MO_ 0Ox01
#define TO_M1_ 0x02
#define TO _CT_ Ox04
#define TO_GATE_ 0x08
#define T1 _MO_ 0x10
#define T1 M1 _ 0x20
#define T1 _CT_ 0x40
#define T1 GATE_ 0x80
#define T1 _MASK_ OxFO
ﬁgefine TO_MASK_ OxOF
DS5000 P1 Bit Registers y
sbit P1 0 = 0x90;
sbit P11 = 0x91;
shit P1 2 = 0x92;
sbit P1 3 = 0x93;
sbhit P1 4 = 0x94;
sbit P1 5 = 0x95;
sbit P1 6 = Ox96;
sbit P1_7 = 0x97;
AN162
18
A e e e e e e e e
DS5000 SCON Bit Registers)
sbit RI = 0x98;
sbit Tl = 0x99;
sbit RB8 = 0x9A;
sbit TB8 = 0x9B;
sbit REN = 0x9C;
sbit SM2 = 0x9D;
sbit SM1 = Ox9E;
sEit SMO = Ox9F;
DS5000 P2 Bit Registers iy
sbit P2 _0 = OxAO;
sbit P2_1 = OxAl;
sbit P2 2 = OxA2;
sbit P2_3 = OxA3;
sbit P2_4 = OxA4;
sbit P2 5 = OxA5;
sbit P2 6 = OxA6;
sgit P2 7 = OxA7;
DS5000 IE Bit Registers
__ */

Page 13 of 15

sbit EXO = OxA8;

sbit ETO = OxA9;

sbit EX1 = OxAA;

sbit ET1 = OxAB;

sbit ES = OxAC;

sbit EA = OxAF;

*

DS5000 P3 Bit Registers (Mnemonics & Ports) y
sbit RD = OxB7;

sbit WR = OxB6;

sbit T1 = OxB5;

sbit TO = OxB4;

sbit INT1 = OxB3;

sbit INTO = OxB2;

sbit TXD = OxB1;

sbit RXD = 0xBO;

sbit P3_0 = OxBO;

sbit P31 = OxB1;

sbit P32 = OxB2;

sbit P33 = OxB3;

sbit P34 = OxB4;

sbit P3 5 = OxB5;

sbit P36 = OxB6;

sbit P3_ 7 = OxB7;

AN162

19

A e e e e e e
DS5000 IP Bit Registers iy
sbit PXO = 0OxB8;

sbit PTO = 0OxB9;

sbit PX1 = OxBA;

sbit PT1 = OxBB;

sbit PS = OxBC;

sbit RWT = OxBF;

*

DS5000 MCON Bit Values iy
#define SL_ Ox01
#define PAA_ 0x02
#define ECE2_ 0x04
#define RA32_8 0x08
#define PAO_ 0x10
#define PAl_ 0x20
#define PA2_ 0x40
igefine PA3_ 0x80

DS5000 PSW Bit Registers iy
sbit P = OxDO;

sbit OV = 0xD2

sbit RSO = 0OxD3;

sbit RS1 = 0OxD4;

sbit FO = OxD5;

sbit AC = OxD6;

sbit CY = OxD7;

) e __
Interrupt Vectors:

Interrupt Address = (Number * 8) + 3 iy
#define 1EQO_VECTOR O /* 0x03 */

#define TFO_VECTOR 1 /* Ox0B */

#define 1E1_VECTOR 2 /* 0x13 */

#define TF1 VECTOR 3 /* Ox1B */

#define SIO_VECTOR 4 /* 0x23 */

#define PFW_VECTOR 5 /* Ox2B */

*
__ */

#endif

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

Page 14 of 15

Related Parts

DS1822 Econo 1-Wire Digital Thermometer -- Free Samples
DS1822-PAR Econo Parasite-Power Digital Thermometer

DS18B20 Programmable Resolution 1-Wire Digital Thermometer -- Free Samples
DS18B20-PAR 1-Wire Parasite-Power Digital Thermometer

DS18S20 1-Wire Parasite-Power Digital Thermometer -- Free Samples
DS18S20-PAR Parasite-Power Digital Thermometer

Automatic Updates

Would you like to be automatically notified when new application notes are published in your areas of interest? Sign up for EE-
Mail™,

Application note 162: www.maxim-ic.com/an162

More information

For technical support: www.maxim-ic.com/support

For samples: www.maxim-ic.com/samples

Other questions and comments: www.maxim-ic.com/contact

AN162, AN 162, APP162, Appnotel62, Appnote 162
Copyright © by Maxim Integrated Products
Additional legal notices: www.maxim-ic.com/legal

Page 15 of 15

http://www.maxim-ic.com/datasheet/index.mvp/id/2795/ln/en
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1822&ln=en
http://www.maxim-ic.com/datasheet/index.mvp/id/2796/ln/en
http://www.maxim-ic.com/datasheet/index.mvp/id/2812/ln/en
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18B20&ln=en
http://www.maxim-ic.com/datasheet/index.mvp/id/2813/ln/en
http://www.maxim-ic.com/datasheet/index.mvp/id/2815/ln/en
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18S20&ln=en
http://www.maxim-ic.com/datasheet/index.mvp/id/2816/ln/en
http://www.maxim-ic.com/ee_mail/home/subscribe.mvp?phase=apn
http://www.maxim-ic.com/ee_mail/home/subscribe.mvp?phase=apn
http://www.maxim-ic.com/an162
http://www.maxim-ic.com/support
http://www.maxim-ic.com/samples
http://www.maxim-ic.com/contact
http://www.maxim-ic.com/legal

	maxim-ic.com
	Interfacing the DS18X20/DS1822 1-Wire® Temperature Sensor in a Microcontroller Environment - AN162

