
VikiLABS
Working with an Incremental Rotary

Encoder

www.vikipedialabs.com

May 27, 2017

1 Introduction

Figure 1: The LPD3806 600BM G5 24C Rotary Encoder

1

www.vikipedialabs.com

A rotary encoder is used to measure rotational speed, angle and
acceleration of an object. It is used to precisely measure rotation of
a joint or motor. Rotary encoders are used to provide direct physi-
cal feedback of motor position, joint position, and speed of rotation.
Unlike potentiometers, it can turn infinitely with no end stop. Rotary
encoders come in various kinds of resolutions. The number of pulses
or steps generated per complete turn varies from 16 - 1024 pulses/rev-
olution.

A

B Clockwise

B Counter
Clockwise

Figure 2: Incremental Rotary Encoder: two square wave outputs (A
and B) which are 90◦ out of phase

A rotary encoder has two square wave outputs (A and B) which
are 90◦ out of phase with each other. Every time the A signal pulse
is on the falling edge, the value of the B pulse is read. From Fig 2,
when the encoder is turned clockwise, the B pulse is always positive.
The B pulse is negative when the encoder is turned counter-clockwise.
By connecting both outputs with a microcontroller, it is possible to
determine the direction of turn. By counting the number of A pulses,
we can determine how far it has turned. The two outputs (A and B)
represent the motion of the encoder disc as a quadrature modulated
pulse train. By adding a third index signal that pulses once for each
revolution, the exact position of the rotor can be known.

2

2 Specifications:

The LPD3806 600BM G5 24C Rotary Encoder has the following spec-
ifications:

• 600 pulses/revolution for a single phase. Therefore, two-phase
output leads to 2400 pulses/revolution

• Maximum mechanical speed: 5000 Revolutions/minute

• Response frequency: 0-20KHz

3 Connections:

Colour − Connection

1. Red − 5-24V DC

2. Black − Ground

3. Green − A phase

4. White − B phase

The rotary encoder is open collector encoder, so it is necessary
to connect pull-up resistors of 10KΩ to the A and B phase outputs,
otherwise it will not function properly. Note that A and B phase
outputs must not be directly connected with Vcc, otherwise, will burn
the output triode. The connection is shown in Fig. 3.

3

Figure 3: Incremental Rotary Encoder: two square wave outputs (A
and B) which are 90◦ out of phase

4 Measuring RPM Using an Encoder

Revolutions Per Minute (RPM), or how fast something turns, can be
sensed in a variety of ways. Two of the most common sensors used
to determine RPM are optical encoders and Hall effect sensors. These
sensors output one or more pulses per revolution (depending on the
sensor). There are differences in waveforms for varying RPMs. As
RPM increases, the period (T) and pulse width (W) becomes smaller.
Both period and pulse width are proportional to RPM. The frequency
(or period) of either A or B signal gives the RPM of the joint. Counting
the number of pulses gives motor position. A-B phase provides motor
direction.

4

5 Arduino Code:

The Arduino Code gotten from Arduino Playground is given below. I
included a line in the void loop() function to measure the angle of the
joint or motor. Since I am using the LPD3806 600BM G5 24C Rotary
Encoder, and it produces 2400 pulses for one complete revolution which
is 360◦, Therefore, the angle is given by:

Angle = Pulse Count× 360

2400
(1)

∴ Angle = Pulse Count× 3

20

Note that in the code, the pulses keep counting to 216 = 65536
after which it resets. In order to avoid this, the pulse count needs to
be reset to 0 after it gets to 2400. For my application, the joint would
not make a complete 360◦ so there was no need to reset it.

Another important point when installing the encoder is that the
direction of positive rotation matters. If the encoder is installed such
that its rotation is in the counter clockwise position, the variable en-
coder0Pos will start from 65536 and start counting down.

Listing 1: Arduino Code
1 #define encoder0PinA 2
2 #define encoder0PinB 3
3
4 volatile unsigned int encoder0Pos = 0 ;
5
6 float ang le = 0 . 0 ;
7
8 void setup () {
9 pinMode (encoder0PinA , INPUT) ;

10 pinMode (encoder0PinB , INPUT) ;
11
12 void doEncoderA () ;

5

13 void doEncoderB () ;
14
15 // encoder pin on interrupt 0 (pin 2)

16 a t ta ch In t e r rup t (0 , doEncoderA , CHANGE) ;
17
18 // encoder pin on interrupt 1 (pin 3)

19 a t ta ch In t e r rup t (1 , doEncoderB , CHANGE) ;
20
21 S e r i a l . begin (9 6 0 0) ;
22 }
23
24
25 void loop (){
26 S e r i a l . p r i n t l n (encoder0Pos , DEC) ;
27 ang le = encoder0Pos ∗ (3 . 0 / 2 0 . 0) ;
28 S e r i a l . p r i n t l n (ang le) ;
29 }
30
31 void doEncoderA (){
32 // look for a low-to-high on channel A

33 if (d i g i t a lRead (encoder0PinA) == HIGH) {
34 // check channel B to see which way encoder is turning

35 if (d i g i t a lRead (encoder0PinB) == LOW) {
36 encoder0Pos = encoder0Pos + 1 ; // CW

37 }
38
39 else {
40 encoder0Pos = encoder0Pos − 1 ; // CCW

41
42 }
43 }
44
45 else { // must be a high-to-low edge on channel A

46 // check channel B to see which way encoder is turning

47 if (d i g i t a lRead (encoder0PinB) == HIGH) {
48 encoder0Pos = encoder0Pos + 1 ; // CW

49 }
50 else {
51 encoder0Pos = encoder0Pos − 1 ; // CCW

6

52 }
53 }
54 }
55
56
57 void doEncoderB () {
58 // look for a low-to-high on channel B

59 if (d i g i t a lRead (encoder0PinB) == HIGH) {
60 // check channel A to see which way encoder is turning

61 if (d i g i t a lRead (encoder0PinA) == HIGH) {
62 encoder0Pos = encoder0Pos + 1 ; // CW

63 }
64 else {
65 encoder0Pos = encoder0Pos − 1 ; // CCW

66 }
67 }
68
69 // Look for a high-to-low on channel B

70 else {
71 // check channel B to see which way encoder is turning

72 if (d i g i t a lRead (encoder0PinA) == LOW) {
73 encoder0Pos = encoder0Pos + 1 ; // CW

74 }
75 else {
76 encoder0Pos = encoder0Pos − 1 ; // CCW

77 }
78 }
79 }

7

	Introduction
	Specifications:
	Connections:
	Measuring RPM Using an Encoder
	Arduino Code:

